- - 問題 3 4------

 $\cos 2\theta + \sqrt{3}\sin \theta - 1 = 0$ を解け。ただし $(0 \le \theta < 2\pi)$ とする。

【解説】

倍角の公式 $\cos 2\theta = 1 - 2 \sin^2 \theta$ を代入すれば、 $\sin \theta$ のみの式になります。

【解答】

$$\cos 2\theta + \sqrt{3}\sin \theta - 1 = 0$$

$$(1 - 2\sin^2 \theta) + \sqrt{3}\sin \theta - 1 = 0 \blacktriangleleft \cos 2\theta = 1 - 2\sin^2 \theta$$
 を代入した
$$2\sin^2 \theta - \sqrt{3}\sin \theta = 0$$

$$\sin \theta (2\sin \theta - \sqrt{3}) = 0$$
よって $\sin \theta = 0$, $\frac{\sqrt{3}}{2} \Rightarrow \theta = 0$, π , $\frac{\pi}{3}$, $\frac{2}{3}\pi$

河見賢司

高校数学の勉強法

http://www.hmg-gen.com/

メールはこちらから

magdai@hmg-gen.com (何か言ってくれると嬉しいです)